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Abstract— Coevolutionary algorithms hold
great promise for the automatic discovery of
strong strategies in games, but may run into
problems with intransitive superiority rela-
tionships. Pareto coevolution gets around
this difficulty by explicitly treating perfor-
mance against each player in the popula-
tion as a dimension for multi-objective op-
timization. Pareto coevolution was previ-
ously applied [1] to Texas Hold’em poker,
a complex game of imperfect information.
The current paper describes work on im-
proving the poker strategy representation
and on improving the Pareto selection algo-
rithm by incorporating deterministic crowd-
ing, a diversity maintenance technique. Rea-
sonably strong poker strategies are evolved,
but only when evolution commences from a
hand-coded starting point.

Keywords— Poker, coevolution, Pareto, de-
terministic crowding, genetic algorithm.

I. INTRODUCTION

HEN using machine learning techniques

to find a good strategy in a game, we
normally hope to find one that performs well
against a wide variety of opponents. Coevo-
lutionary algorithms — in which each player
competes against other players from the same
or a sister population — are an appealing
method of automatically providing the re-
quired variety in opposing strategies. In-
deed, when coevolutionary algorithms work
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well, they provide not only varied opposition,
but also opposition that is graded to an appro-
priate difficulty level [2]: as evolution improves
one strategy, it also improves the competition
(the familiar “arms race” scenario). However,
coevolutionary algorithms do not always work
as intended, and there are a number of pitfalls
in their use [2].

One such pitfall involves intransitive supe-
riority relationships. That is, although some
player A might be beaten by some other player
B, and B may in turn be beaten by C, it
may not be the case that C beats A. The
existence of intransitive superiority relation-
ships can mean that although a coevolutionary
search method persistently finds strategies that
are better than the last strategy, it fails to find
a strategy that is good in general. Intransitive
superiority relationships suggest that a prob-
lem domain is multi-dimensional, in the sense
that being good against one strategy does not
necessarily mean that you are good against an-
other.

A potential way out of this trap is to treat
performance against each coevolutionary op-
ponent as a separate dimension for optimiza-
tion, and then to apply established multi-
dimensional optimization techniques (e.g., se-
lection based on Pareto dominance — see [3]
and [4] for reviews) in order to find a robust
strategy or set of strategies. This contrasts
with a standard coevolutionary genetic algo-
rithm (GA), in which a strategy’s overall mean
performance against its opponents is the basis
for its selection.



A. Problems with previous work

In a previous paper [1] the idea of players as
dimensions, or “Pareto coevolution,” was made
explicit and applied to the domain of Texas
Hold’em poker. It was shown that this method
led to the discovery of stronger strategies than
did a standard coevolutionary GA given the
same number of evaluations. However, there
were a number of problems with [1] which the
current work aims to address.

The previous paper was intended to show
that Pareto coevolution (PC) was a workable
idea, and it did so using a fairly simplistic
poker strategy representation. Players’ betting
decisions were specified using a rule-based sys-
tem of threshold hand-strengths and desired
betting levels, e.g., “if your hand is a pair of
aces or better then raise until the bet stands at
10 chips.” The representational scheme com-
pletely ignored a number of concepts widely
known to be important in Hold’em, such as:
position, whether one’s two hole cards are
suited and/or connected, whether the pot is
giving you sufficient odds to call, how to re-
spond to scare cards on the board, etc.! Given
these limitations, the best evolved strategies
were surprisingly strong to play against, but
it seems unlikely that truly competitive strate-
gies will be found without a richer encoding
scheme. The program described here there-
fore employs a sparsely-encoded neural net-
work with a layer of hidden neurons and a large
number of potentially relevant inputs.

A second problem with the earlier work was
a loss of diversity in the Pareto-evolved popula-
tions. Ideally, a method based on finding non-
Pareto-dominated individuals should deliver a
diverse set that approximates the true Pareto
front of best possible compromise strategies. If
diversity has all but disappeared from the pop-
ulation (as tends to happen in most standard
GAs) then something has gone wrong, and we
cannot be covering the Pareto front. In or-

!Knowledge of the game structure and basic strategy
for Texas Hold’em poker is assumed here. A summary
of the rules of the game is included in [1]; for authorita-
tive discussions on strategy, see [5], [6] and [7]. There is
also a wealth of online material available on this game.

der to combat this problem, the current work
adds a standard diversity-maintenance tech-
nique known as deterministic crowding [8] to
the PC algorithm.

Another concern with earlier work [1] was
that the age of strategies on the current non-
dominated front at any one time was very low;
the median age was just a single generation.
This indicates either that progress was ex-
tremely rapid or that the front was not holding
on to “accumulated wisdom” very well: other
data, such as performance against a set of ref-
erence players, suggest the latter explanation.
In the current work, it is hoped that the use of
deterministic crowding will also alleviate this
problem, by making it more difficult for an in-
dividual to be ejected from the current non-
dominated set.

B. Poker and machine learning

Why poker? Originally poker was chosen
because of a desire to avoid toy problems in
favour of a real game, in order to provide a
convincing test of the hypothesis that PC can
be used to find robust strategies [1]. Also,
as others have pointed out, poker’s status as
the quintessential game of imperfect informa-
tion, with its strategic elements of bluffing and
double-bluffing, make it a challenging applica-
tion for machine learning techniques in general.

There have of course been other approaches
to computer poker. One notable research
group is located at the University of Alberta
(for an overview of their work see [9]). In the
strategy specification employed by the Alberta
group, players have various heuristics for de-
ciding on their next betting action, and they
also model the behaviour of their opponents
and respond accordingly (e.g., they may no-
tice that one opponent raises constantly and so
give his raises less respect). These two aspects
have been reproduced in the current approach,
although the opponent modelling is markedly
less sophisticated. The Alberta group also al-
low players to use brute-force simulation of
the possible ways in which the current hand
might play out to make their decision, i.e., sim-
ulating the distribution of the as-yet-unseen



cards many thousands of times and making the
next betting decision based on the average out-
come. That sort of approach is computation-
ally intractable if one wants to use coevolution-
ary methods: millions of hands of poker must
be played to evolve strong strategies, and if
each decision by each player within each hand
involves extensive simulation then things will
quickly grind to a halt.

Other researchers (e.g., [10] and [11]) have
focused on a single player that adapts over
time and learns to beat a table of opponents
with fixed strategies. The PC idea can be
contrasted with these approaches in that it in-
volves a population of individuals who are in-
tended to provide a wide variety of competition
for each other, and thus lead to the discovery
of genuinely robust strategies.

Finally, it should be noted that unlike some
previous work on computer poker, the game
described here has not been simplified in any
way: a person could walk into a Las Vegas
casino and play exactly the same game that
the coevolving players are playing. To be spe-
cific, the game is $2 / $4 Texas Hold’em (i.e.,
bets and raises of $2 in the first two rounds
and $4 in the third and fourth round, with a
three-raise maximum in any one round). No-
limit and pot-limit poker are certainly of inter-
est also, but their high-variance characteristics
mean they will have to wait for future work.

II. METHOD
A. Strategy representation

A player’s betting decisions are specified us-
ing two distinct neural networks, one for pre-
flop play and the other for play on the flop,
turn and river (i.e., the second and subsequent
betting rounds). The pre-flop network has 69
inputs, and the post-flop network has 109.2
The inputs can be loosely grouped into infor-
mation about the player’s cards, information
about the progress of the hand and the state
of the table, and opponent modelling informa-

2For the complete list of inputs, and indeed
for all source code, please email the author at
jasonn@comp.leeds.ac.uk.

tion. Inputs can be either Boolean or continu-
ous. Sample inputs include:

« Player holding an ace? (Pre-flop, Boolean).

« How many bets does the player have to call?
(Pre-flop & post-flop, continuous).

+ How often does this opponent raise vs. just
calling? (Pre-flop & post-flop, continuous).

o Player hit top pair? (Post-flop, Boolean).

o« How many better straights than yours are
possible? (Post-flop, continuous).

The inputs are potentially connected to 5
hidden neurons, which are in turn connected
to 3 output neurons, labelled “Fold”, “Call”,
and “Raise”. Inputs can also be connected di-
rectly to outputs. Input values are all squeezed
to within the 0.0-1.0 range, using the func-
tion y = %m if necessary. Input values are
multiplied by the appropriate weights and lead
to activation in the hidden and output neu-
rons. The hidden neuron activation levels are
thresholded at 0.0, and positive activations are
squeezed with the above function before being
propagated to the outputs. Finally, the out-
put neurons are examined and the one with
the highest activity level determines the next
action.

If the neural networks were completely inter-
connected, there would be 567 weights in the
pre-flop network and 887 in the post-flop net-
work. This was felt to be an excessive search
space for evolution, and so a sparse encoding
scheme was used, whereby only 50 connections
exist in each network at any one time. The
connections are represented as a source neu-
ron, a destination neuron, and a weight value.
Mutations can change the weight of a connec-
tion, and they can also change its source or
destination, but no mutation can result in the
addition or deletion of a connection. Connec-
tion weights vary between +1.0, although this
value is stretched with the function y = 5 _“”| 2
before being applied.

B. Selection

The population size was 20, and in each of
5000 generations 200 games were played. Each
game consisted of 10 players being randomly
selected to sit down at a table and play 100



hands. (Every player in the population could
therefore expect to play 10,000 hands of poker.)
Players were seated in a random order and
given $100 to start with. The game was played
for table stakes, but rebuying after busting out
was automatic.

To facilitate Pareto dominance calculations,
a matrix was used to keep track of how much
money each player had won or lost from every
other player in the population. A player A is
said to Pareto-dominate player B if A’s per-
formance against all players (including A & B
themselves) is at least as good as B’s perfor-
mance. In fact, due to the stochastic nature of
poker, it was necessary to include a $100 mar-
gin of error in these calculations, as two play-
ers with identical strategies could easily win or
lose at least that amount from each other over
the 5,000 hands they expect to contest. So, A
dominates B if A does no more than $100 worse
than B against any player, and more than $100
better than B against at least one player.

Deterministic crowding [8] is a simple mech-
anism for diversity maintenance which is easily
coupled with PC. Under deterministic crowd-
ing, two parents are chosen at random, and
two offspring are generated using mutation and
crossover functions. Each offspring is matched
with the parent that it most resembles. If the
offspring is fitter than the parent, it replaces
the parent. In our case, the offspring needs to
Pareto-dominate the parent in order to replace
it. Thus, at any one time, 10 individuals in the
population were members of the approximate
Pareto front, and 10 were their offspring com-
peting to replace their matched parent in that
front.

A standard coevolutionary GA with elitism
was also employed as a comparison with PC.
Selection in the GA was based simply on each
player’s bank balance after all 20,000 hands
had been played. Player balances were scaled
with the minimum balance being set equal to
zero, and roulette selection was used on the
scaled scores.

Mutation and crossover were identical in the
PC and GA conditions: the mutation rate was
0.02, which meant that each offspring could

expect, on average, around three mutations
in each of its networks, as compared with its
parent. Source and destination mutations in-
volved the random choice of a new neuron
from an appropriate category. Weight muta-
tions involved the addition of a Gaussian ran-
dom variable to the existing weight, yx = 0.0,
o = 0.2. Crossover was employed 50% of the
time, and when used it was implemented as
uniform crossover with bias of between 60%
and 100% towards one parent (which made de-
terministic crowding easier to implement).

C. Additional experiments

Several variations to the above were imple-
mented. In the standard case, the popula-
tion was initialized with random strategies and
they were assessed solely by playing against
each other. In the fized opponent (FO) con-
dition, five hand-coded fixed strategies were
present at every table. (This necessitated dou-
bling the number of games played so that each
player could still expect 10,000 hands.) The
fixed strategies obviously did not evolve, but
a player’s performance against each of them
made for five more dimensions to optimize. It
was felt that the fixed strategies might provide
some sort of a ratchet effect, preventing eccen-
tric or degenerate strategies from doing well.

The search space for the sparse neural net-
works was smaller than it might have been,
but still enormous, so in the head start (HS)
condition the population was initialized not
with random values but with identical copies of
a hand-coded network pair that implemented
reasonably good play. Finally, the two variants
were combined in the fized opponent / head
start (FO/HS) condition.

ITII. RESULTS

It is paradoxically difficult to provide a sin-
gle, general measure of the strength of the
evolved strategies, as their performance can
only be measured with respect to a particu-
lar opponent or set of opponents. Assessment
of the strategies evolved under the PC and GA
regimes was carried out by having each indi-
vidual in the population play alone against a
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Fig. 1. Mean performance of evolved strategies

in 1000 hands of play against the reference group;
final generation of PC and GA runs compared for
each of the four conditions. Results averaged over
3 runs in each case.

table stocked with reference strategies (the “al-
pha reference group” from [1]) for a fixed se-
quence of 1000 hands. Note that the reference
strategies were distinct from the fixed oppo-
nents, and were never encountered during evo-
lution.

Figure 1 shows that across all conditions, PC
found stronger strategies than did the GA. It
is also clear that the FO and HS conditions im-
proved upon the standard setup (except in the
GA HS condition) which should not be sur-
prising, given that they involve the incorpo-
ration of additional poker knowledge into the
algorithm. In particular, the combined FO/HS
condition resulted in some quite strong players.

Although it is disappointing to see that
the evolved strategies only beat the reference
strategies in the HS and FO/HS conditions,
the strategies do appear to be stronger, on
average, than those reported in [1]. In the
previous work, mean performance against the
reference strategies was about —3,000 in the
GA case and —700 in the PC case. When
the strongest population from the previous re-
search (Pareto run 5 of 20) was matched up
with the strongest population found so far (PC
run 3 in the FO/HS condition) and allowed
to play 1,000,000 hands, the neural network
strategies took an average of $44.72 per 1,000
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Fig. 2. Mean performance over time of evolved
strategies in 1000 hands of play against the refer-
ence group: the best PC and GA runs from the
FO/HS condition. Note that some GA scores of as
low as —9, 700 have been chopped off the lower edge
of the graph.

hands from their simpler rule-based cousins.

Performance over time in the FO/HS condi-
tion is instructive: Figure 2 shows the best of
3 PC runs and the best of 3 GA runs from this
condition. First, it can be seen that progress
has definitely been made, as the hand-coded
network does not perform very well against
the reference strategies at the outset. In the
PC run, performance is maintained for long
periods, and moves up in modest steps: the
PC algorithm can hang on to its accumulated
knowledge. In the GA run, on the other hand,
mean performance oscillates wildly. This sug-
gests that the population is chasing its own tail
and not advancing in any objective sense: in-
transitive superiority relationships may well be
to blame.

Figure 3 shows the mean and median ages
of members of the Pareto front during the best
PC run in the FO/HS condition (the same PC
run shown in Figure 2). It is clear that strong
strategies can remain in the front for a long
time (i.e., it gets harder and harder to find off-
spring that dominate their parents) and that
this effect itself increases over time.

Figure 4 shows convergence statistics (calcu-
lated as the likelihood that one individual will
have the same connection as another present in
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Fig. 3. Mean and median age of members of the
Pareto front, over time, in the best PC run from
the FO/HS condition.

its network, with a weight value within £0.2 of
the first) from a PC run and a GA run in the
standard condition. The figure shows that the
PC algorithm is slower to converge, that it does
not reach the same convergence level as the
GA, and that its absolute level of convergence
is quite low at around 0.2. On the other hand,
convergence in the HS and FO/HS conditions
is interesting (graph not shown) because obvi-
ously it starts out at 1.0 — the population is
stocked with identical hand-coded strategies —
but after that, it falls away more quickly un-
der a GA than it does under PC, as mutation
and crossover destroy good strategic elements
faster than selection can hold onto them.

IV. DISCUSSION

Pareto coevolution and deterministic crowd-
ing seems to be a happy marriage. Determinis-
tic crowding actually makes the PC algorithm
very easy to implement, as dominance relations
only need to be checked between parent and
offspring, and it prevents the extreme levels
of convergence seen in [1]. It has also led to
stronger levels of performance, as compared
with the previous work, on a larger search
space of strategies. The only downside is that
it can take a long time to find an offspring
that dominates its most-similar parent, but
this should not be surprising, as once the par-
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Fig. 4. Genetic convergence of the population over
time, in one PC run and one GA run from the stan-
dard condition.

ents have achieved a reasonable level of play
most mutations will obviously be deleterious.
Nevertheless, in future it may prove worthwhile
to experiment with adaptive mutation rates in
order to see whether dominant offspring can be
found any more quickly.

The PC algorithm can hang on to its accu-
mulated knowledge, as seen in the head start
and fixed opponent / head start conditions.
This makes the technique potentially applica-
ble to any game where we have a reasonable
strategy, either hand-coded or generated us-
ing another machine learning method, that we
would like to start from. The author devised
the hand-coded net used in the head start con-
dition with great care, and expected it to do
quite well; it was sobering to see how quickly
the PC algorithm improved upon it.

Sadly, however, the PC algorithm was not
particularly successful in arriving at strong
poker strategies when starting from scratch,
i.e., in the standard condition. Nor was the
GA, however. The PC method may turn out
to require a few reasonable strategies to be
present in the population, in order to point
things in the right direction: it seemed clear
that when competing against a parent that
is effectively playing randomly, offspring with
similarly poor strategies could sometimes dom-
inate that parent through luck alone.

The results also show that the PC algorithm



makes better use of the information provided
by performance against the fixed opponents
(i.e., mean scores were higher for PC in the FO
and FO/HS conditions). This makes it, again,
perhaps applicable to many games where refer-
ence players are available. Future evolution of
poker strategies could be improved by includ-
ing stronger reference players, such as those
produced by other poker researchers. It may
even be possible to bootstrap future runs by
using some of the strategies described here.

Overall, the work has led to some reason-
ably good strategies. The author reluctantly
confesses that although he wins against the
strongest population so far, he is currently in
the red against the elite strategy from one
of the PC FO/HS runs. The evolved play-
ers have a very cautious feel to them: they
are tight and aggressive pre-flop, and post-flop
they are very reluctant to raise once a possi-
ble straight or flush shows — unless of course
they have it. This suggests a possible appli-
cation in the burgeoning online poker indus-
try: just as “prop” players are employed by a
casino to make sure that tables are always well-
populated and therefore appealing for a new
player, evolved players might be used to fill an
online table until 10 human players arrive.

In conclusion, PC looks like a promising ap-
proach to coevolving game strategies, espe-
cially when it can be applied to a decent start-
ing strategy. Clearly there is a need to exper-
iment further with parameters such as muta-
tion rate, population size, and the margin of
error for Pareto dominance assessment: none
of these have yet been subjected to a proper
sensitivity analysis, and might have drastic ef-
fects on the results. In addition, the runs may
simply need to be longer. There is no evi-
dence that performance in the PC runs has
plateaued yet, unlike in the GA runs (see Fig-
ure 2), and the median age of strategies in the
front gets very high, suggesting that more time
is needed to find improved offspring. Finally,
it would also be desirable to compare the best
evolved strategies more systematically with hu-
man players of various levels, and with other
computer poker programs.
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